Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Models struggle to accurately simulate observed sea ice thickness changes, which could be partially due to inadequate representation of thermodynamic processes. We analyzed co‐located winter observations of the Arctic sea ice from the Multidisciplinary Drifting Observatory for the Study of the Arctic Climate for evaluating and improving thermodynamic processes in sea ice models, aiming to enable more accurate predictions of the warming climate system. We model the sea ice and snow heat conduction for observed transects forced by realistic boundary conditions to understand the impact of the non‐resolved meter‐scale snow and sea ice thickness heterogeneity on horizontal heat conduction. Neglecting horizontal processes causes underestimating the conductive heat flux of 10% or more. Furthermore, comparing model results to independent temperature observations reveals a ∼5 K surface temperature overestimation over ice thinner than 1 m, attributed to shortcomings in parameterizing surface turbulent and radiative fluxes rather than the conduction. Assessing the model deficiencies and parameterizing these unresolved processes is required for improved sea ice representation.more » « less
- 
            During the Arctic winter, the conductive heat flux through the sea ice and snow balances the radiative and turbulent heat fluxes at the surface. Snow on sea ice is a thermal insulator that reduces the magnitude of the conductive flux. The thermal conductivity of snow, that is, how readily energy is conducted, is known to vary significantly in time and space from observations, but most forecast and climate models use a constant value. This work begins with a demonstration of the importance of snow thermal conductivity in a regional coupled forecast model. Varying snow thermal conductivity impacts the magnitudes of all surface fluxes, not just conduction, and their responses to atmospheric forcing. Given the importance of snow thermal conductivity in models, we use observations from sea ice mass balance buoys installed during the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition to derive the profiles of thermal conductivity, density, and conductive flux. From 13 sites, median snow thermal conductivity ranges from 0.33 W m−1 K−1 to 0.47 W m−1 K−1 with a median from all data of 0.39 W m−1 K−1 from October to February. In terms of surface energy budget closure, estimated conductive fluxes are generally smaller than the net atmospheric flux by as much as 20 W m−2, but the average residual during winter is −6 W m−2, which is within the uncertainties. The spatial variability of conductive heat flux is highest during clear and cold time periods. Higher surface temperature, which often occurs during cloudy conditions, and thicker snowpacks reduce temporal and spatial variability. These relationships are compared between observations and the coupled forecast model, emphasizing both the importance and challenge of describing thermodynamic parameters of snow cover for modeling the Arctic as a coupled system.more » « less
- 
            Wysession, Michael; Grimm, Nancy; Peterson, Bill; Hofmann, Eileen; Zhang, Renyi; Illangasekare, Tissa (Ed.)Abstract In 2023, the first Polar Postdoc Leadership Workshop convened to discuss present and future polar science issues and to develop leadership skills. The workshop discussions fostered a collective commitment to inclusive leadership within the polar science community among all participants. Here, we outline challenges encountered by underrepresented groups in polar sciences, while also noting that progress has been made to improve inclusivity in the field. Further, we highlight the inclusive leadership principles identified by workshop participants to bring to the polar community as we transition into leadership roles. Finally, insights and practical knowledge we gained from the workshop are shared, aiming to inform the community of our commitment to inclusive leadership and encourage the polar community to join us in pursuing action toward our shared vision for a more welcoming polar science future.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Deming, J.; Nicolaus, M. (Ed.)As part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), four autonomous seasonal ice mass balance buoys were deployed in first- and second-year ice. These buoys measured position, barometric pressure, snow depth, ice thickness, ice growth, surface melt, bottom melt, and vertical profiles of temperature from the air, through the snow and ice, and into the upper ocean. Observed air temperatures were similar at all four sites; however, snow–ice interface temperatures varied by as much as 10°C, primarily due to differences in snow depth. Observed winter ice growth rates (November to May) were <1 cm day−1, with summer melt rates (June to July) as large as 5 cm day−1. Air temperatures changed as much as 2°C hour−1 but were dampened to <0.3°C hour−1 at the snow–ice interface. Initial October ice thicknesses ranged from 0.3 m in first-year ice to 1.2 m in second-year ice. By February, this range was only 1.20–1.46 m, due in part to differences in the onset of basal freezing. In second-year ice, this delay was due to large brine-filled voids in the ice; propagating the cold front through this ice required freezing the brine. Mass balance results were similar to those measured by autonomous buoys deployed at the North Pole from 2000 to 2013. Winter average estimates of the ocean heat flux ranged from 0 to 3 W m−2, with a large increase in June 2020 as the floe moved into warmer water. Estimates of average snow thermal conductivity measured at two buoys during periods of linear temperature profiles were 0.41 and 0.42 W m−1 °C−1, higher than previously published estimates. Results from these ice mass balance buoys can contribute to efforts to close the MOSAiC heat budget.more » « less
- 
            Abstract. Comparing the output of general circulation models to observations is essential for assessing and improving the quality of models. While numerical weather prediction models are routinely assessed against a large array of observations, comparing climate models and observations usually requires long time series to build robust statistics. Here, we show that by nudging the large-scale atmospheric circulation in coupled climate models, model output can be compared to local observations for individual days. We illustrate this for three climate models during a period in April 2020 when a warm air intrusion reached the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition in the central Arctic. Radiosondes, cloud remote sensing and surface flux observations from the MOSAiC expedition serve as reference observations. The climate models AWI-CM1/ECHAM and AWI-CM3/IFS miss the diurnal cycle of surface temperature in spring, likely because both models assume the snowpack on ice to have a uniform temperature. CAM6, a model that uses three layers to represent snow temperature, represents the diurnal cycle more realistically. During a cold and dry period with pervasive thin mixed-phase clouds, AWI-CM1/ECHAM only produces partial cloud cover and overestimates downwelling shortwave radiation at the surface. AWI-CM3/IFS produces a closed cloud cover but misses cloud liquid water. Our results show that nudging the large-scale circulation to the observed state allows a meaningful comparison of climate model output even to short-term observational campaigns. We suggest that nudging can simplify and accelerate the pathway from observations to climate model improvements and substantially extends the range of observations suitable for model evaluation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
